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Abstract

Objectives Inflammation is associated with atherosclerosis. Cholestin (Monascus
purpureus-fermented rice) contains a naturally occurring statin, which has lipid-modulating,
anti-inflammatory and antioxidative effects. This study aimed to investigate the effects of
Cholestin extract on the expression of matrix metalloproteinase (MMP)-2 and MMP-9 by
tumor necrosis factor (TNF)-a-treated human aortic smooth muscle cells (HASMCs).
Methods Zymography, reverse transcription polymerase chain reaction and immunoblot
analyses were used for analysis of MMP expression of TNF-a-stimulated HASMCs. Gel
shift assay was used for analysis of transcription factor nuclear factor-kB (NF-kB) activa-
tion. Intracellular reactive oxygen species (ROS) generation was also analysed.
Key findings The supplement of HASMCs with Cholestin extract significantly sup-
presses enzymatic activities of MMP-2 and MMP-9 in TNF-a-stimulated HASMCs.
RT-PCR and immunoblot analyses show that Cholestin extract significantly attenuates
TNF-a-induced mRNA and protein expressions of MMP-2 and MMP-9. Gel shift assays
show that Cholestin treatment reduces TNF-a-activated NF-kB. Furthermore, Cholestin
also attenuates intracellular ROS generation in TNF-a-treated HASMCs. The supplement
with an ROS scavenger N-acetyl-cysteine (glutathione precursor) gives similar results to
Cholestin.
Conclusions Cholestin reduces TNF-a-stimulated MMP-2 and MMP-9 expression as well
as downregulating NF-kB activation and intracellular ROS formation in HASMCs, support-
ing the notion that the natural compound Cholestin may have potential application in clinical
atherosclerosis disease.
Keywords atherosclerosis; inflammation; nuclear factor-kB; oxidative stress; red yeast
rice

Introduction

Red yeast rice, a fermented product of rice and red yeast (Monascus purpureus), has been
used by the Chinese for many centuries to make rice wine, for maintaining the taste and
the color of meat and fish and for its medicinal properties.[1–3] Cholestin™, a dietary
supplement related to red yeast rice, has been reported to have lipid-lowering effects and is
considered beneficial in subjects with hyperlipidemia.[1] The pharmacological preparation
from red yeast rice that is marketed in China, the USA and many other countries
is composed of 73.4% starch, 5.8% protein, less than 2% fat and a number of compounds
called monacolins (~0.4%), which are inhibitors of 3-hydroxy-3-methylglutaryl coenzyme
A reductase.[4] It has also been reported that Cholestin contains 2–6% fatty acids including
linoleic acid, oleic acid, palmitic acid and stearic acid,[5] some of which exhibit lipid-
lowering properties.[6]
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Red yeast rice contains a family of naturally occurring
statins that have a marked modulating effect on lipids.[1,7,8]

The extract has been shown to have free-radical scaveng-
ing properties.[9–11] Dhale et al. described the isolation and
characterization of dihydromonacolin-MV, a new monacolin
metabolite, as a potent antioxidant from M. purpureus.[12]

Recently, a Cholestin extract was found to decrease C-reactive
protein and to protect endothelial function through lipid-
lowering and anti-inflammatory mechanisms.[13–17] More-
over, a previous study also showed that Cholestin can reduce
homocysteine-stimulated endothelial adhesiveness as well as
downregulating intracellular reactive oxygen species (ROS)
formation, supporting the notion that Cholestin may have
potential applications in clinical atherosclerosis.[18]

The proliferation and migration of vascular smooth muscle
cells (VSMCs) may play a key role in the development of
intimal thickening after arterial-wall injury or in atheroscle-
rosis.[19,20] VSMCs in the tunica media have low mitogenic
activity, but during the early stages of arterial-wall injury or
atherosclerosis they may undergo a transition from a con-
tractile to a synthetic phenotype and begin proliferating in
response to various growth factors, causing intimal hyperpla-
sia of the arterial walls.[19] In addition to growth factor stimu-
lation, the replication and migration of VSMCs may require
the degradation or remodelling of the extracellular matrix
(ECM) surrounding the cells; an imbalance between the
accumulation and degradation of ECM may be crucial in the
development of the intimal thickening that forms after
vascular-wall interventions.[19] This proteolytic balance within
the arterial wall towards matrix breakdown is partly mediated
by matrix metalloproteinases (MMPs). MMP-2 and MMP-9
are indispensable for the degradation of type IV collagen, a
major component of the basement membrane.[21] Recent
experimental data show that inflammatory cytokines, includ-
ing tumor necrosis factor-a (TNF-a), may induce the expres-
sion of the genes encoding MMPs.[22]

Increased oxidative stress may play the main role in
the inflammatory mechanisms that cause the progression of
atherosclerosis.[23,24] Inflammatory cytokine TNF-a is one
well-known cytokine and stimulates the production of MMPs
through the activation of intracellular signalling pathways,
including redox-sensitive transcription factor nuclear factor-
kB (NF-kB). TNF-a has also been shown to promote the
expression of MMPs in VSMCs through oxidative-stress-
related mechanisms. Since Cholestin may exhibit a ‘pleiotro-
pic’ effect on vascular protection, the ability of Cholestin to
modulate the expression of MMP-2 and MMP-9 activation of
redox-sensitive transcription factor NF-kB by TNF-a-treated
human aortic smooth muscle cells (HASMCs) was tested in
the present study. The antioxidant N-acetyl-cysteine (NAC)
was used as a positive control for ROS scavenging. This is the
first study to show that Cholestin reduces intracellular ROS
production and inhibits NF-kB activation, and consequently
decreases MMP-2 and MMP-9 expression in HASMCs. Since
the degradation of the ECM and basement membrane by
HASMCs and the migration of VSMCs through MMP-2 and
MMP-9 overexpression are crucial steps in the pathogenesis
of atherosclerosis and restenosis, this study implies that
Cholestin may have therapeutic potential in the prevention of
cardiovascular disease.

Materials and Methods

Materials
TNF-a and NAC were purchased from Sigma Chemical Co.
(MO, USA). Cholestin was kindly provided by Pharmanex (Nu
Skin Taiwan Inc., Taiwan Branch) and extracted at room tem-
perature with an 8: 1: 1 (volume) mixture of water, ethanol
and dimethyl sulfoxide (DMSO) as previously described.[18]

The final concentration of solvents in the testing solution was
always < 0.5% to avoid possible interference or cytotoxicity.

Cell culture
HASMCs, purchased as cryopreserved tertiary cultures
from Cascade Biologics (OR), were grown in culture flasks in
SMC growth medium M231 (Cascade Biologics, Inc.) supple-
mented with fetal bovine serum (5%), human epidermal
growth factor (10 ng/ml), human basic fibroblast growth factor
(3 ng/ml), insulin (10 mg/ml), penicillin (100 U/ml), strepto-
mycin (100 pg/ml) and Fungizone (1.25 mg/ml) at 37°C in a
humidified 5% CO2 atmosphere. The growth medium was
changed every other day until confluence, when the cells were
passaged by division between four culture dishes and again
grown to confluence. Cells were used between passages 3 and
8. The purity of the HASMC cultures was verified by immu-
nostaining with a monoclonal antibody against smooth
muscle-specific a-actin.

MTT assay
The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium
bromide (MTT, Sigma, USA) assay was used to measure cell
viability. The principle of this assay is that mitochondrial
dehydrogenase in viable cells reduces MTT to a blue formazan.
Briefly, cells were grown in 96-well plates and incubated
with various concentrations of agents. After twice washing
HASMCs with PBS, 100 ml of medium containing MTT
(0.5 mg/ml) was added to each well and incubation continued
at 37°C for an additional 4 h. The medium was then carefully
removed so as not to disturb the formazan crystals formed.
100 ml DMSO, which solubilizes the formazan crystals, was
added to each well and the absorbance of the solubilized
blue formazan read at 540 nm using a microplate reader (Mul-
tiskan Ex, ThermoLabsystems) with DMSO as the blank. The
reduction in optical density caused by the chemicals was used
as a measurement of cell viability, normalized to cells incu-
bated in control medium, which were considered 100% viable.

Gelatin zymography
Conditioned media from control, TNF-a-treated and Choles-
tin (NAC) + TNF-a-treated cells were collected and concen-
trated. Equal amounts (20 mg) of total protein were loaded
onto 10% SDS polyacrylamide gels containing 1 mg/ml
gelatin for the assessment of MMP activity. After gel electro-
phoresis, the gels were twice washed in 2.5% Triton X-100 for
15 min at room temperature to remove the SDS and permit
partial renaturation of the protein. Gels were incubated sub-
sequently at 37°C overnight in a buffer containing 10 mm
CaCl2, 150 mm NaCl and 50 mm Tris-HCl, pH 7.5 and then
stained with 0.2% Coomassie blue and photographed on a
light box. Proteolysis was detected as a white zone in a dark
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blue field. For quantitative analysis of MMP-2 and MMP-9
activation, the resultant bands were scanned and then sub-
jected to digital image analysis.[25,26]

Western blot analysis
Protein extracts were prepared as previously described.[27]

Briefly, HASMCs were lysed in 100 ml lysis buffer with pro-
tease inhibitor (PIERCE), after washing by PBS, and were
then centrifuged for 30 min at 4°C and 12 000g to harvest
the supernatant. The cell total protein was quantified by
use of Bio-Rad protein assay reagent. The whole-cell lysates
were subjected to SDS-polyacrylamide (10%) gel electro-
phoresis, followed by electroblotting onto a polyvinylidene
fluoride membrane (Amersham Biosciences). Membranes
were probed with a goat monoclonal antibody directed to
MMP-2 and MMP-9 (Calbiochem, CA, USA) and incubated
with horseradish peroxidase-labelled secondary antibody.
They were then washed with PBS containing 0.1% Tween 20.
Bands were visualized by chemiluminescence detection
reagents (PerkinElmer, USA). Anti-a-tubulin antibodies were
used as loading control. A digital imaging device was used to
perform densitometric quantitation of bands in the laboratory
setting. Following acquisition, the image is downloaded by
means of a serial interface to a personal computer. There it is
analysed to ensure that the series of pixel intensities lie within
the linear range and it is then quantitated with local back-
ground subtraction. Densitometric analysis was conducted
with ImageQuant (Promega) software to semi-quantify the
Western blot data.

Isolation of total RNA and reverse transcription
polymerase chain reaction analysis
Total RNA was isolated from arterial segments using
a TRIZOL reagent kit according to the manufacturer’s
instructions. cDNA was synthesized from total RNA using
Superscript II reverse transcriptase. Reverse transcription
polymerase chain reaction analysis (RT-PCR) was performed
using a LightCycler and the FastStart DNA Master SYBR
Green I kit (Roche). The levels of MMP-2 and MMP-9
mRNA expression were determined in arbitrary units by com-
parison with an external DNA standard that was amplified by
the rabbit-specific MMP-2 or MMP-9 primers. The PCR
primers used were as follows: MMP2 forward primer, 5′-
TTG GAT CCT CCT ACA GCA GCT GCA CCA G-3′, and
reverse primer, 5′-AAG AAT TCC CGT AGA GCT CTT
GAA TGC-3′; MMP9 forward primer, 5′-AAG GAT CCA
GTT TCC GTT CAT CTT CCA G-3′, and reverse primer,
5′-AAG AAT TCG GCG CCG GTA GGG CTG GTA-3′;
GAPDH forward primer, 5′-TGC CCC CTC TGC TGA TGC
C-3′, and reverse primer, 5′-CCT CCG ACG CCT GCT TCA
CCA C-3′.

Electrophoretic mobility shift assay
Nuclear protein extracts were prepared as previously
described.[28] Briefly, after washing with PBS, the cells were
scraped off the plates in 0.6 ml of ice-cold buffer A (HEPES
10 mm, pH 7.9; KCl 10 mm; dithiothreitol (DTT) 1 mm; phe-
nylmethylsulphonylfluoride (PMSF) 1 mm; MgCl2 1.5 mm;
and 2 mg/ml each of aprotinin, pepstatin and leupeptin). After

centrifugation at 300g for 10 min at 4°C, the cells were resus-
pended in buffer B (80 ml of 0.1% Triton X-100 in buffer A),
left on ice for 10 min, then centrifuged at 12 000g for 10 min
at 4°C. The nuclear pellets were resuspended in 70 ml of
ice-cold buffer C (HEPES 20 mm, pH 7.9; MgCl2 1.5 mm;
NaCl 0.42 M; DTT 1 mm; EDTA 0.2 mm; PMSF 1 mm; 25%
glycerol and 2 mg/ml each of aprotinin, pepstatin and leupep-
tin), then incubated for 30 min at 4°C, followed by centrifu-
gation at 15 000g for 30 min at 4°C. The resulting supernatant
was stored at -70°C as the nuclear extract. Protein concentra-
tions were determined by the Bio-Rad method.

Electrophoretic mobility shift assay (EMSA) was carried
out with the DIG Gel Shift Kit (Roche Diagnostics) following
the user’s manual. In the first step, single-stranded comple-
mentary oligonucleotides containing the binding sequences
for transcription factors were annealed and end-labelled with
digoxygenin. The NF-kB probe used in the gel shift assay was
a 31-mer synthetic double-stranded oligonucleotide (5′-ACA
AGG GAC TTT CCG CTG GGG ACT TTC CAG G-3′;
3′-TGT TCC CTG AAA GGC GAC CCC TGA AAG GTC
C-5′) containing a direct repeat of the kB site. The labelled
probes (48 fmol of double-stranded oligonucleotides) were
then incubated for 30 min at 4°C with 10 mg of nuclear extract
proteins in 40 mm HEPES buffer, pH 7.9, containing 100 mm
KCl, 12.5 mm MgCl2, 1 mm EDTA, 20% glycerol, 1 mm DTT,
2 mg of poly(dI–dC) and 0.2 mg of poly-(l)-lysine. Then the
mixtures were subjected to electrophoresis on a 6% poly-
acrylamide gel with 0.5¥ Tris/borate/EDTA running buffer.
The DIG-oligonucleotide/protein complexes were transferred
to a Hybond-N blotting membrane (Amersham Life Science,
Germany) and the shift bands were visualized. Densitometric
analysis was conducted with, ImageQuant software (Promega)
to semi-quantify the EMSA data. The specificity of the binding
reaction was determined by coincubating duplicate samples
with 100-fold molar excess of unlabelled oligonucleotide
probe and anti-NF-kB (anti-p65) antibody.

Detection of intracellular ROS
The effect of Cholestin on ROS production in HASMCs
was determined by a fluorometric assay using 2′,7′-
dichlorofluorescein diacetate (DCFH-DA) as the probe.[28]

This method is based on the oxidation by H2O2 of non-
fluorescent DCFH-DA to fluorescent DCF. Briefly, 15 mm
DCFH-DA was added to the medium in the last 20 min of
incubation (37°C, 18 h) and HASMCs were washed by
Hank’s balanced salt solution (without Ca2+, Mg2+) containing
10% bovine serum albumin. Then 250 ml cell lysis buffer
(PBS containing 20% ethanol, 0.1% Tween 20) was added to
each well. After centrifuging, the supernatant was transferred
to measure the fluorescence intensity (relative fluorescence
units) at 485 nm excitation and 530 nm emission using a
fluorescence microplate reader (Victor II).

Statistical analyses
Results were expressed as mean � SEM, and data were
analysed using the Kruskal–Wallis test with Dunn’s test as the
post-hoc test for significant difference. Statistical significance
was defined as P < 0.05. All statistical procedures were per-
formed with SigmaStat version 3.1 (Jandel, USA).
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Results

MTT assay for TNF-a, Cholestin and NSC
on HASMCs
Cell viability was assessed using the MTT assay. Treatment of
HASMCs with 0–50 mg/ml Cholestin for 24 h did not result
in cytotoxicity, whereas high concentrations of Cholestin
(�80 mg/ml) significantly inhibited cell survival (Figure 1). In
addition, cell viability did not significantly change with
50 mg/ml Cholestin or 5 mm NAC treatment for 18 h followed
by 10 ng/ml TNF-a stimulation for 6 h (data not shown).
The results indicate that the significant cytotoxic effects on
HASMCs were found in high-dose Cholestin. The non-
cytotoxic working concentrations of Cholestin extract
(�50 mg/ml) in the following tests were used to avoid
possible interference with cell viability.

Cholestin inhibits TNF-a-induced induction of
MMP-2 and MMP-9 enzyme activity and
protein expression
A number of studies have demonstrated that MMPs are impor-
tant for VSMC proliferation and migration into the intima.[19]

Recent studies have also reported that TNF-a stimulates
the induction of MMPs in VSMCs.[22,26,29–36] Therefore, to
determine the efficacy of Cholesin in inhibiting MMP-2
and 9 expression by TNF-a, HASMCs were cultured with
TNF-a (10 ng/ml) in the absence or the presence of varying
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Figure 1 HASMC viability after culture with Cholestin for 24 h as
determined by MTT assay. Data are expressed as percentage
(mean � SEM) of survival cells using the untreated group as control
(viability = 100%). The results are from five separate experiments,
*P < 0.05, compared to control.
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Figure 2 Effects of Cholestin and NAC on TNF-a-stimulated MMP-2 and MMP-9 enzymatic activity and protein expression. (A) Cholestin inhibits
the TNF-a (10 ng/ml)-induced increase in MMP-2 and MMP-9 activity as indicated by gelatin zymography. (B) Cholestin inhibits the TNF-a-induced
increase in MMP-2 and MMP-9 protein levels in HASMCs as analyzed by Western blotting. Densitometric analysis was conducted with software to
semi-quantify zymography and Western blot data. The data are the mean � SEM for three separate experiments. *P < 0.05 compared to control cells.
#P < 0 .05 compared to HASMCs treated with TNF-a alone.
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concentrations of Cholestin. After 6 h, the conditioned
medium and cell lysates were harvested for analysis of MMP-
2/MMP-9 enzymatic activity and protein expression by
zymography and Western blot, respectively (Figure 2a and b).
Media from control HASMCs demonstrated low-level pro-
teolytic activities at 92 kD, 72 kD and 62 kD, corresponding
to MMP-9, Pro-MMP-2 and MMP-2, respectively. In contrast,
treatment with TNF-a (10 ng/ml) increased the expression
of a band of proteolytic MMP-9 and MMP-2 activities.
This induction of MMP activity by TNF-a was inhibited
in the presence of Cholestin in a dose-dependent manner.
Similar results were found in immunoblot results (Figure 2b),
although TNF-a has less impact on the enzymatic activities of
MMP-2 and MMP-9. These data indicate that Cholestin treat-
ment inhibits TNF-a-stimulated increases in MMP-9/MMP-2
activity and protein expression. The preincubation of cells
with the antioxidant NAC (an ROS scavenger control) almost
completely abrogates TNF-a-induced upregulation of MMPs.

Cholestin inhibits TNF-a-induced MMP-2 and
MMP-9 mRNA expression
RT-PCR assays were performed to investigate whether or not
the downregulation of MMP expression by Cholestin occurs
at the transcriptional level. As shown in Figure 3, MMP-9/
MMP-2 mRNA expression was induced by TNF-a after 3 h.

A pretreatment with Cholestin strongly inhibited the TNF-a-
induced mRNA expression of MMPs in a dose-dependent
manner, in accordance with the zymography and immunoblot
results. NAC also significantly inhibited MMP mRNA expres-
sion from TNF-a exposed to HASMCs. This result suggests
that Cholestin inhibits MMP-9 and MMP-2 at the transcrip-
tional level.

Inhibition of TNF-a-induced activation of NF-kB
by Cholestin
Transcriptional regulation involving NF-kB activation has
been implicated in TNF-a-induced MMP expression in
VSMCs.[22,32–34,37] To examine whether Cholestin inhibits NF-
kB activation or not, gel-shift assays were performed with the
consensus NF-kB binding sequence. Incubation of HASMCs
with 10 ng/ml TNF-a caused strong activation of NF-kB at
1 h. The activation of NF-kB induced by TNF-a could be
suppressed by the ROS scavenger NAC, as detected by DNA
binding activity. The addition of 10 and 50 mg/ml Cholestin
showed that TNF-a-derived NF-kB shifted bands were
significantly reduced (Figure 4). These results suggest that
Cholestin and NAC may downregulate NF-kB activation.

Inhibition of TNF-a-induced intracellular ROS
generation by Cholestin
Inflammatory cytokine TNF-a may activate NF-kB in
VSMCs via oxidative stress.[34,35] The effect of Cholestin
on intracellular ROS generation in HASMCs was studied.
Figure 5 shows the effects of 1, 10 and 50 mg/ml Cholestin
and 5 mm NAC on intracellular ROS production induced
by TNF-a (10 ng/ml for 30 min) in HASMCs. Treatment
with Cholestin (10 and 50 mg/ml) or NAC significantly in-
hibited untreated and TNF-a-induced ROS production in
HASMCs.

Discussion

Cholestin (M. purpureus-fermented rice) contains a naturally
occurring statin that has lipid-modulating, anti-inflammatory
and antioxidative effects. In this study, it was found for the
first time that Cholestin treatment effectively attenuates TNF-
a-induced mRNA and protein expression of MMP-2 and
MMP-9. It was also shown that this inhibition of MMPs in
HASMCs might come about through ROS and NF-kB signal-
ling pathways.

Initial degradation of the ECM is an inevitable step for
vascular cells to hypertrophy, proliferate and migrate. Vascu-
lar cells, including VSMCs, secrete MMPs that selectively
digest the individual components of the ECM. Among MMPs,
MMP-2 and MMP-9 regulate VSMC migration and prolife-
ration by acting specifically on basement membrane com-
ponents that modulate communication with surrounding
activated cells. It has been shown that MMP-2 is constitu-
tively expressed in VSMCs in normal arteries in addition to
increased MMP-2 expression; MMP-9 expression is induced
in VSMCs and macrophages in atherosclerotic arteries.[38]

This study aimed to investigate the anti-atherogenic mecha-
nism of Cholestin in HASMC against TNF-a treatment,
as TNF-a functions as a stimulator in the pathogenesis of
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Figure 3 Effects of Cholestin and NAC on TNF-a-stimulated MMP-2
and MMP-9 mRNA expression. RT-PCR analyses of MMP-2 and MMP-9
expressions in cultured HASMCs. The PCR products on the gel were also
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vascular lesions such as atherosclerosis.[39] The present study
provides new evidence that TNF-a enhances MMP-2 and
MMP-9 protein expression and activity in cultured HASMCs.
In addition, the study also demonstrated that NAC, an ROS
scavenger and glutathione precursor, attenuates MMP-2 and
MMP-9 expression. It is possible that TNF-a may contribute
to the development of atherosclerotic vascular remodelling at
multiple steps mediated by MMP-2 and MMP-9, including
the initial activation of the inflammatory cytokine network,
recruitment of inflammatory cells to the plaque, plaque desta-
bilization, and finally plaque rupture associated with clot
formation. Therefore, the inhibition of MMP-2 and MMP-9
appears to be an appropriate target for the development of
anti-atherogenic agents.

In addition, our study examined whether treatment with
Cholestin inhibits TNF-a-stimulated MMP-2 and MMP-9
activity in HASMCs. Of considerable interest in this study
was the marked reduction by Cholestin of the secretion
of MMP-2 and MMP-9 from TNF-a-stimulated VSMC, as
determined by zymography and Western blot. These findings
suggest that Cholestin may have anti-atherogenic and anti-
inflammatory effects on HASMCs through the inhibition of
MMP-2 and MMP-9 expression, which have been linked to
the progression of plaque rupture and intimal formation in
arterial lesions.

The effects of Cholestin were tested because it is derived
from a Chinese product, red yeast rice, commonly used
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control group; #P < 0.05, compared to TNF-a-treated or control group.
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in traditional Chinese medicine for the treatment of blood
stasis, a cardiovascular-related disorder.[40] Cholestin is rich
in polyphenolic compounds, which inhibit homocysteine-
stimulated endothelial adhesiveness as well as downregulat-
ing intracellular ROS formation, NF-kB activation and
vascular adhesion molecule-1 expression in endothelial cells,
supporting the notion that Cholestin may have potential appli-
cations in clinical atherosclerosis.[18] In the present study,
Cholestin treatment effectively reduced MMP-2 and MMP-9
expression in TNF-a-stimulated HASMCs. Collectively,
these data suggest that Cholestin treatment decreases MMP-2
and MMP-9 expression and might therefore assist in the pre-
vention of inflammation and pathogenesis of atherosclerosis.

Transcriptional regulation involving NF-kB activation has
been implicated in the TNF-a-induced activation of
VSMCs.[41] A key component of MMP expression is the
redox-sensitive transcription factor NF-kB.[42] Consistent with
previous studies,[21,22,32–34] it was demonstrated that TNF-a
activates NF-kB in VSMCs, suggesting that the upregulation
of MMP expression in response to TNF-a may be mediated
by this transcriptional factor. However, NF-kB is a ubiqui-
tously expressed multiunit transcription factor that is activated
by diverse signals, possibly via phosphorylation of the IkB
subunit and its dissociation from the inactive cytoplasmic
complex, followed by translocation of the active dimers p50
and p65, to the nucleus.[43] In several immortalized cell lines,
NF-kB is activated by diverse stimuli, such as TNF-a,
interlukin-1b and lipopolysaccharides, and inhibited by
the antioxidants pyrrolidine dithiocarbamate and NAC.[44]

Since Cholestin has been shown to exhibit antioxidative
properties,[9–11] this study demonstrates a similar pattern
of Cholestin-sensitive inactivation of MMP expression and
NF-kB activity in HASMCs.

The antioxidative components such as sterols,
isoflavones,[1] pigments,[45] dimerumic acid[9,11] and
dihydromonacolin-MV[12] may possibly contribute to the
anti-athergenetic effect of Cholestin. In a previous study of
the radical-scavenging abilities of Cholestin using the probe-
based ultra-weak chemiluminescence technique, the scaveng-
ing activities of Cholestin on O2

–· OH·, and ROO· but not
H2O2 were demonstrated in vitro.[18] In the early stage of
atherosclerosis, TNF-a-induced superoxide anion production
may play a potential role in NF-kB activation in the vascular
wall via activation of IkB kinase.[23] It has been shown that
statins have intrinsic antioxidant activity with both antihy-
droxyl and peroxyl radical activity.[46] Recently, a novel
antioxidant mechanism by which statins reduce ROS in
endothelial cells has been demonstrated and statin-mediated
S-nitrosylation of thioredoxin enhanced the enzymatic activ-
ity of thioredoxin, resulting in a significant reduction in intra-
cellular ROS.[47] Based on the results of the present study, it
is proposed that the inhibitory effect of Cholestin on MMP
expression and NF-kB activation may be due to its antioxidant
properties and that it acts by directly scavenging ROS. Further
study of the direct radical scavenging ability of various com-
ponents is in progress in order to determine the mechanism
of action of Cholestin. Additionally, based on the significant
decrease in viability of HASMCs at relatively high concen-
trations of Cholestin (160 mg/ml), attention should be paid to
possible side effects in clinical application.

Conclusion

This study shows that Cholestin treatment effectively re-
duces MMP-2 and MMP-9 expression in TNF-a-stimulated
HASMCs. This is the first study to show that Cholestin
reduces intracellular ROS production, NF-kB activation
and that it consequently decreases MMP-2 and MMP-9
expression in HASMCs. Since the degradation of the ECM
and basement membrane by HASMCs and the migration of
VSMCs through MMP-2 and MMP-9 overexpression are
crucial steps in the pathogenesis of atherosclerosis and rest-
enosis, this study implies that Cholestin may have therapeutic
potential in the prevention of cardiovascular disease.
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